r******e 发帖数: 244 | 1 我的问题是这样的:
意志一个系统状态X的先验分布为N(mu, sigma),和测量更新方程: Z=HX+V,
H为线性矩阵,V为测量噪声,设为normal分布. 要求X的后验概率密度.
我使用了两种方法:
1 基于random walking 的MCMC方法, 但是这个方法求的后验概率的均值和方差都很不
稳定. 我已经使用超过100万次的转移,效果还是不理想. 我用的是M_H的方法,求解一个
未知参数为二维的问题, 转移概率 : 后验概率~先验概率*likehood函数.
2 所以我想通过卡尔曼滤波的方法,求的这个后验概率的真实的均值和方差, 以下是我
的结论:
E(X_hat)=(I-K*H)*E(X)+ K*Z
Cox(X_hat)=(I-K*H)*Cov(X)*(I-K*H)' +K*Cov(Z)*K'
K=Cov(X)*H'*(H*Cov(X)*H+Cov(Z))^-1
K是卡尔曼滤波增益, X_hat表示后验值. 用这个公式算出的均值和方差和MCMC方法在先
验概率均值为0时,基本一致.
但均值如果不为零,则结果不符合.
求各位卡尔曼高手,说说,我这个推导有问题么? 还有MCMC的方法结果则么这么差阿? |
|