由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 几何不等式
相关主题
两个concave函数的和,差,积是否仍然为concave 函数?zz:希尔伯特23个数学问题及其解决情况
不等式证明一问已知a, b, c, ab=cd, 求d的作图解
不等式一题问个小问题,一个名词
data clustering by vector correlation distance (转载)请教大伙,怎么找到正方形的三个支撑点?
Predict values of vectors generated by black box functions请教一个问题
two vectors' coefficient of determination (转载)Re: 10个包子求解 (转载)
请教一个向量几何问题庆祝中国人又啃下一个数学难题 (转载)
分形的艺术-4如何计算两个四边形重叠部分的面积
相关话题的讨论汇总
话题: prove话题: let话题: some话题: terms话题: now
进入Mathematics版参与讨论
1 (共1页)
D**u
发帖数: 204
1
This is problem I saw many years ago, a fairly good one.
Let X,Y,Z be vectors in R^3. Prove that:
|X| + |Y| + |Z| + |X+Y+Z| >= |Y+Z| + |X+Z| + |X+Y|.
B********e
发帖数: 10014
2
没头绪,哪位给个hint?
thanks for sharing!

【在 D**u 的大作中提到】
: This is problem I saw many years ago, a fairly good one.
: Let X,Y,Z be vectors in R^3. Prove that:
: |X| + |Y| + |Z| + |X+Y+Z| >= |Y+Z| + |X+Z| + |X+Y|.

D**u
发帖数: 204
3
先平方.

【在 B********e 的大作中提到】
: 没头绪,哪位给个hint?
: thanks for sharing!

B********e
发帖数: 10014
4
哦,i give up
一见一大堆平方我就有畏难情绪哈

【在 D**u 的大作中提到】
: 先平方.
D**u
发帖数: 204
5
A lot of terms are canceled out.

【在 B********e 的大作中提到】
: 哦,i give up
: 一见一大堆平方我就有畏难情绪哈

r******o
发帖数: 122
6

请说下一步..
兄台数学太好,讲话不必落实,但仍希望能照顾一下平实的小民。

【在 D**u 的大作中提到】
: A lot of terms are canceled out.
D**u
发帖数: 204
7
Take square of both sides of the original equation. Some terms are canceled
out, and after some re-arranging of the remaining terms, the inequality
becomes:
(|X|*|X+Y+Z|+|Y|*|Z|)+(|Y|*|X+Y+Z|+|X|*|Z|)+(|Z|*|X+Y+Z|+|X|*|Y|)
>= |X+Y|*|X+Z|+|Y+X|*|Y+Z|+|Z+X|*|Z+Y| (1)
Now if we can prove
|X|*|X+Y+Z|+|Y|*|Z| >= |X+Y|*|X+Z| (2)
|Y|*|X+Y+Z|+|X|*|Z| >= |Y+X|*|Y+Z| (3)
|Z|*|X+Y+Z|+|X|*|Y| >= |Z+X|*|Z+Y| (4)
then we are done by adding up (2),(3)and(4).
By symmetry, (2),(3) a

【在 r******o 的大作中提到】
:
: 请说下一步..
: 兄台数学太好,讲话不必落实,但仍希望能照顾一下平实的小民。

B********e
发帖数: 10014
8
试了下,但搞得4,5个大西格玛的term一堆,实在懒得搞哇
有什么trick吗?或者怎么看比较直观?
哎,太愚昧,太愚昧啦

canceled

【在 D**u 的大作中提到】
: Take square of both sides of the original equation. Some terms are canceled
: out, and after some re-arranging of the remaining terms, the inequality
: becomes:
: (|X|*|X+Y+Z|+|Y|*|Z|)+(|Y|*|X+Y+Z|+|X|*|Z|)+(|Z|*|X+Y+Z|+|X|*|Y|)
: >= |X+Y|*|X+Z|+|Y+X|*|Y+Z|+|Z+X|*|Z+Y| (1)
: Now if we can prove
: |X|*|X+Y+Z|+|Y|*|Z| >= |X+Y|*|X+Z| (2)
: |Y|*|X+Y+Z|+|X|*|Z| >= |Y+X|*|Y+Z| (3)
: |Z|*|X+Y+Z|+|X|*|Y| >= |Z+X|*|Z+Y| (4)
: then we are done by adding up (2),(3)and(4).

B********e
发帖数: 10014
9
一双双明亮的眼睛盯着,却见死不救哈
准备烧马尾巴呼唤双修侠啦

canceled

【在 D**u 的大作中提到】
: Take square of both sides of the original equation. Some terms are canceled
: out, and after some re-arranging of the remaining terms, the inequality
: becomes:
: (|X|*|X+Y+Z|+|Y|*|Z|)+(|Y|*|X+Y+Z|+|X|*|Z|)+(|Z|*|X+Y+Z|+|X|*|Y|)
: >= |X+Y|*|X+Z|+|Y+X|*|Y+Z|+|Z+X|*|Z+Y| (1)
: Now if we can prove
: |X|*|X+Y+Z|+|Y|*|Z| >= |X+Y|*|X+Z| (2)
: |Y|*|X+Y+Z|+|X|*|Z| >= |Y+X|*|Y+Z| (3)
: |Z|*|X+Y+Z|+|X|*|Y| >= |Z+X|*|Z+Y| (4)
: then we are done by adding up (2),(3)and(4).

D**u
发帖数: 204
10
(claim: a friend of mine gave the proof of this question, which is different from the "official" proof of the original question we saw in publication).
Now let's prove
|Y|*|X+Y+Z|+|X|*|Z| >= |X+Y|*|Y+Z| (3)
Proof:
Find a 四面体 ABCD such that
X = B-A, Y = C-B, Z=D-C.
Then (3) can be approved by directly applying 托勒密不等式
which says that "四边形的任两组对边乘积之和不小于另外一组对边的乘积,取等号当且
仅当共圆或共线。(四点可不限于同一平面)"
See the following links about 托勒密不等式:
http://zhidao.baidu.com/question/20356987.html
http://zh.wikipedia.org/wi

【在 B********e 的大作中提到】
: 试了下,但搞得4,5个大西格玛的term一堆,实在懒得搞哇
: 有什么trick吗?或者怎么看比较直观?
: 哎,太愚昧,太愚昧啦
:
: canceled

B********e
发帖数: 10014
11
great! man, i appreciate it!

different from the "official" proof of the original question we saw in
publication).
号当且

【在 D**u 的大作中提到】
: (claim: a friend of mine gave the proof of this question, which is different from the "official" proof of the original question we saw in publication).
: Now let's prove
: |Y|*|X+Y+Z|+|X|*|Z| >= |X+Y|*|Y+Z| (3)
: Proof:
: Find a 四面体 ABCD such that
: X = B-A, Y = C-B, Z=D-C.
: Then (3) can be approved by directly applying 托勒密不等式
: which says that "四边形的任两组对边乘积之和不小于另外一组对边的乘积,取等号当且
: 仅当共圆或共线。(四点可不限于同一平面)"
: See the following links about 托勒密不等式:

1 (共1页)
进入Mathematics版参与讨论
相关主题
如何计算两个四边形重叠部分的面积Predict values of vectors generated by black box functions
平面上有n个点,能不能认为这些点把平面分为n个convex set?two vectors' coefficient of determination (转载)
有限元算法为什么要分成三角形请教一个向量几何问题
请教计算图形面积的软件分形的艺术-4
两个concave函数的和,差,积是否仍然为concave 函数?zz:希尔伯特23个数学问题及其解决情况
不等式证明一问已知a, b, c, ab=cd, 求d的作图解
不等式一题问个小问题,一个名词
data clustering by vector correlation distance (转载)请教大伙,怎么找到正方形的三个支撑点?
相关话题的讨论汇总
话题: prove话题: let话题: some话题: terms话题: now