i*******e 发帖数: 8 | 1 We consider 3 types of the status X_t:
(i) a person is employed (E);
(ii) a person is unemployed (U);
(iii) a person is retired (R).
denote the employment status measured annually, Let assume that probability P(X_t+1|X_t
) is given, and initial status is E,
P(E|E) = 0.8; P(U|E) = 0.01; P(R|E)= 0.19;
P(E|U) = 0.5; P(U|U) = 0.375; P(R|U)= 0.125;
P(E|R) = 0; P(U|R) = 0; P(R|R)=1;
Find the the average number of status changes.
analytical solution? |
b*****i 发帖数: 58 | 2 1. find the stationary distribution for U = (P(E), P(U), P(R))' by sovling T
'*U = U, where T is the transition matrix between status
2. calclulate the expected number of status changes, e.g., it is 1-0.8 = 0.2
if a status is E.
correct?
_t
【在 i*******e 的大作中提到】 : We consider 3 types of the status X_t: : (i) a person is employed (E); : (ii) a person is unemployed (U); : (iii) a person is retired (R). : denote the employment status measured annually, Let assume that probability P(X_t+1|X_t : ) is given, and initial status is E, : P(E|E) = 0.8; P(U|E) = 0.01; P(R|E)= 0.19; : P(E|U) = 0.5; P(U|U) = 0.375; P(R|U)= 0.125; : P(E|R) = 0; P(U|R) = 0; P(R|R)=1; : Find the the average number of status changes.
|
n*w 发帖数: 41 | 3 Is there stationary state when solving T'U=U?
T
.2
【在 b*****i 的大作中提到】 : 1. find the stationary distribution for U = (P(E), P(U), P(R))' by sovling T : '*U = U, where T is the transition matrix between status : 2. calclulate the expected number of status changes, e.g., it is 1-0.8 = 0.2 : if a status is E. : correct? : : _t
|
i******d 发帖数: 54 | 4 不是应该找到transition matrix的特征值为1的特征向量么? |
i*******e 发帖数: 8 | 5 我好像漏了初始状态是E, 我做MC是7.5,但analytical 不知道
T
.2
【在 b*****i 的大作中提到】 : 1. find the stationary distribution for U = (P(E), P(U), P(R))' by sovling T : '*U = U, where T is the transition matrix between status : 2. calclulate the expected number of status changes, e.g., it is 1-0.8 = 0.2 : if a status is E. : correct? : : _t
|
i*******e 发帖数: 8 | 6 能给 any detail ? thanks
【在 i******d 的大作中提到】 : 不是应该找到transition matrix的特征值为1的特征向量么?
|
l******n 发帖数: 9344 | 7 suppose the average number of status changes starting with E is x
.... with U is y
Since R is absorbing, it will stop at R.We have
x=.8(x+1)+.01(y+1)+.19*1
y=.5(x+1)+.375(y+1)+0.125*1
Solve for x and y
probability P(X_t+1|X_t
【在 i*******e 的大作中提到】 : We consider 3 types of the status X_t: : (i) a person is employed (E); : (ii) a person is unemployed (U); : (iii) a person is retired (R). : denote the employment status measured annually, Let assume that probability P(X_t+1|X_t : ) is given, and initial status is E, : P(E|E) = 0.8; P(U|E) = 0.01; P(R|E)= 0.19; : P(E|U) = 0.5; P(U|U) = 0.375; P(R|U)= 0.125; : P(E|R) = 0; P(U|R) = 0; P(R|R)=1; : Find the the average number of status changes.
|
i*******e 发帖数: 8 | 8 thanks, 应该是这样吧,跟我mc的差不多,只是不明白为什么 x = .8(x+1)...而不是x=.8(x)...
这种情况下状态没变,为什么要加1呢? thanks
【在 l******n 的大作中提到】 : suppose the average number of status changes starting with E is x : .... with U is y : Since R is absorbing, it will stop at R.We have : x=.8(x+1)+.01(y+1)+.19*1 : y=.5(x+1)+.375(y+1)+0.125*1 : Solve for x and y : : : probability P(X_t+1|X_t
|
p****o 发帖数: 88 | 9 (x+1)是因为人为地加了一步造成的吧,x是natural process的话。
是x=.8(x)...
【在 i*******e 的大作中提到】 : thanks, 应该是这样吧,跟我mc的差不多,只是不明白为什么 x = .8(x+1)...而不是x=.8(x)... : 这种情况下状态没变,为什么要加1呢? thanks
|