由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 一个百思不得其解 的 Martingale stopping time 问题
相关主题
W(t/2) + W(t) is a martingale ?请教一个brownian motion的问题
A martingale question问道stochastic calculus 题
expectation of brownian motion[合集] A Brownian Motion Question
[合集] Optional Sampling Theorem 的条件是什么?brownian motion, got an answer but do not feel confident. H
martingale question这道题, 我做得对马?(stochastic process)
[合集] assume W(t) is a standard Brownian motion一道题
[合集] 一道面试题(brownian motion)请教一个面试题
is W_(t/2) a martingale?青蛙跳问题
相关话题的讨论汇总
话题: tau话题: exp话题: martingale话题: since话题: stopping
进入Quant版参与讨论
1 (共1页)
c**a
发帖数: 316
1
Problem: B(t) a standard Brownian motion, how is the expecting time it first
hits either -1 or 1.
Solution:
X(t)=exp(B(t)-0.5t) is a martingale. By option sampling theorem, X(t)
stopped at B(t)=-1 or 1 is also a martingale.
Since X(0)=1, we have 0.5*X(1)+0.5*X(-1)=1.
Or exp(1-0.5t)+exp(-1-0.5t)=2,
Or exp(-0.5t)=2/(e+1/e)
Or t = sqrt(-2 ln(2/(e+1/e)).
What is wrong?
N*******A
发帖数: 65
2
stopping time Tau=inf{t: B(t)=-1 or B(t)=1}
E[X(Tau)]=X(0)=1. By optional sampling theorem, X(t)
stopped at Tau is also a martingale.
E[X(Tau)]=E[exp{B(Tau)-0.5*Tau}]
=P(B(Tau)= 1)* E[exp( 1-0.5*Tau)|B(Tau)= 1]
+P(B(Tau)=-1)* E[exp(-1-0.5*Tau)|B(Tau)=-1]
=0.5*E[exp( 1-0.5*Tau)|B(Tau)= 1]
+0.5*E[exp(-1-0.5*Tau)|B(Tau)=-1]
Then you jumped to
=0.5* exp( 1-0.5*E(Tau))
+0.5* exp(-1-0.5*E(Tau))
without justification?

first

【在 c**a 的大作中提到】
: Problem: B(t) a standard Brownian motion, how is the expecting time it first
: hits either -1 or 1.
: Solution:
: X(t)=exp(B(t)-0.5t) is a martingale. By option sampling theorem, X(t)
: stopped at B(t)=-1 or 1 is also a martingale.
: Since X(0)=1, we have 0.5*X(1)+0.5*X(-1)=1.
: Or exp(1-0.5t)+exp(-1-0.5t)=2,
: Or exp(-0.5t)=2/(e+1/e)
: Or t = sqrt(-2 ln(2/(e+1/e)).
: What is wrong?

i*****k
发帖数: 5
3
E[e(t)]不等于e(E[t])吧
t********t
发帖数: 1264
4
"Since X(0)=1, we have 0.5*X(1)+0.5*X(-1)=1."
this sentence is wrong
B*******8
发帖数: 8
5
I think the right way is:
B(t)^2 - t is martingale.
E(B(tau)^2 - tau) = 0
E(tau) = 1
s***d
发帖数: 6
6
The sqrt on the last row shouldn't be there... Otherwise looks good?
1 (共1页)
进入Quant版参与讨论
相关主题
青蛙跳问题martingale question
[合集] A interview Brain teaser[合集] assume W(t) is a standard Brownian motion
random walk type problem[合集] 一道面试题(brownian motion)
asymmetic random walk questionsis W_(t/2) a martingale?
W(t/2) + W(t) is a martingale ?请教一个brownian motion的问题
A martingale question问道stochastic calculus 题
expectation of brownian motion[合集] A Brownian Motion Question
[合集] Optional Sampling Theorem 的条件是什么?brownian motion, got an answer but do not feel confident. H
相关话题的讨论汇总
话题: tau话题: exp话题: martingale话题: since话题: stopping